My OneHot
My example oneHot to save space.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
class OneHot: | |
def __init__(self, i_dataFrame): | |
self.h={} | |
self.hh={} | |
self.length=0 | |
self.H(i_dataFrame) | |
def H(self,n): | |
a=np.array(n.tolist()) | |
self.h={} | |
self.hh={} | |
count=0 | |
for i in np.sort(np.unique(a)): | |
self.hh[count]=i | |
self.h[i]=count | |
count+=1 | |
self.length=count | |
def oH(self,i): | |
b=np.zeros(self.length,dtype=int) | |
b[self.h[i]]=1 | |
return b | |
# Example Usage | |
# Define a dataframe | |
d=pd.DataFrame(np.array([[1,2,2,3],[4,5,6,7],[4,8,2,7]])) | |
# You want d[0] to be oneHot | |
oneHot = OneHot(d[0]) | |
d['oh']=d[0].apply(lambda x: oneHot.oH(x)) | |
# Returns | |
0 1 2 3 oh <---- This row col names. | |
0 1 2 2 3 [1, 0] | |
1 4 5 6 7 [0, 1] | |
2 4 8 2 7 [0, 1] | |
# Okay, not that you want to encode 1,4,4 as one hot | |
# encoding. But you only have 2 unique values (1,4). | |
# So, to save space, make this only length 2. And, | |
# fill in the gap | |