Neural Networks
I start keeping my references here…
How do you know which parameters to choose for Keras (TensorFlow)?
This Example kernel, shown below, has some interesting properties.
#getting the 2D output:
output = model.get_layer("dense_3").output
extr = Model(model.input, output)
The following article is worth a look
Here’s another resource
Don’t ignore the power of Excel
Good Read…
http://www.scipy-lectures.org/
This is a good intro to python, for scientific computing:
cs231n.github.io/python-numpy-tutorial/
TODO
Look up Resnet
Python Examples for this book
RESOURCES
Deeplearning.net
This one seemed to have some cool code examples..
Numpy Stuff
# Options...left over plus any 1
x[0]+leftOver
# will it increase the score?
# Come back to this
score = Score(x)
def lowest():
sum=100
tic=''
h=score[1]
for k in h.keys():
if h[k][0] < sum:
sum = h[k][0]
tic=k
ticN=np.fromstring(tic[1:-1], dtype=int, sep=' ')
return (tic,sum,ticN)
leftOver=total - np.sum(x,axis=0)
# What you have to work with
leftOver+lowest()[2]
def buildArrayFromScore():
a=np.array([])
for k in score[1].keys():
if a.size==0:
a=np.fromstring(k[1:-1], dtype=int, sep=' ')
else:
a=np.vstack((a,np.fromstring(k[1:-1], dtype=int, sep=' ')) )
return a
def ifFoundReplace(x,b,c):
if b == c:
return x
idx=np.where(np.all(x==b,axis=1))
if idx[0].size != 0:
x[idx]=np.array(c)
return x
score[1].keys()